## TRIDONIC

Compact fixed output

Driver LC 30W 700mA fixC SC ADV2
advanced series


- Max. output power 29.4 W
- Nominal life-time up to $50,000 \mathrm{~h}$
- 5-year guarantee


## Housing properties

- Casing: polycarbonat, white
- Type of protection IP20


## Functions

- Overload protection
- Short-circuit protection
- No-load protection


## Typical applications

- For spot light and downlight in retail and hospitality application
- For panel light and area light in office and education application



## $\longrightarrow$

Standards, page 4
Wiring diagrams and installation examples, page 4

## TRIDONIC


LED Driver
Compact fixed output

Driver 30W 700mA fixC SC ADV2
advanced series

| Rated supply voltage | 220-240 V |
| :---: | :---: |
| AC voltage range | 198-264 V |
| Mains frequency | $50 / 60 \mathrm{~Hz}$ |
| Overvoltage protection | 320 V AC, 1 h |
| THD (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) | < 10 \% |
| Output current tolerance ${ }^{\text {® }}$ | $\pm 7.5$ \% |
| Typ. output LF current ripple at full load ${ }^{(1)}$ | $\pm 5 \%$ |
| Starting time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) | $\leq 0.5 \mathrm{~s}$ |
| Turn off time (at $230 \mathrm{~V}, 50 \mathrm{~Hz}$, full load) | $\leq 0.5 \mathrm{~s}$ |
| Hold on time at power failure (output) | 0 s |
| Ambient temperature ta | $-20 \ldots+50^{\circ} \mathrm{C}$ |
| Ambient temperature ta (at life-time 50,000 h) | $50^{\circ} \mathrm{C}$ |
| Storage temperature ts | $-40 \ldots+80^{\circ} \mathrm{C}$ |
| Mains burst capability | 1 kV |
| Mains surge capability (between $\mathrm{L}-\mathrm{N}$ ) | 1 kV |
| Mains surge capability (between L/N - PE) | 2 kV |
| Surge voltage at output side (against PE) | 3 kV |
| Life-time | up to $50,000 \mathrm{~h}$ |
| Dimensions L $\times \mathrm{W} \times \mathrm{H}$ | $97 \times 43 \times 30 \mathrm{~mm}$ |

## Specific technical data

| Type | Output current ${ }^{(3)}$ | Input current (at 230 V , 50 Hz , full load) | Max. input power | Input power (at 230 V , 50 Hz , full load) | Output <br> power <br> range | $\begin{gathered} \lambda \text { at } \\ \text { full load }{ }^{\oplus} \end{gathered}$ | ```Efficiency at full load }\mp@subsup{}{}{(``` | $\lambda$ at min. load ${ }^{(1)}$ | $\begin{aligned} & \text { Efficiency } \\ & \text { at min. } \\ & \text { load }^{\mathbb{D}} \end{aligned}$ | Min. forward voltage | Max. forward voltage | Max. <br> output voltage | Max. output peak current at full load ${ }^{(2)}$ | Max. output peak current at min. load ${ }^{\text {(2) }}$ | Max. casing temperature tc |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LC 30/700/42 fixC SC ADV2 | 700 mA | 150 mA | 34 W | 33 W | 21.0-29.4 W | 0.95 | 89.5 \% | 0.93C | 87.5 \% | 30 V | 42 V | 60 V | 788 mA | 788 mA | $70^{\circ} \mathrm{C}$ |

${ }^{(1)}$ Test result at $230 \mathrm{~V}, 50 \mathrm{~Hz}$.
${ }^{\text {(2 }}$ The trend between min. and full load is linear and depends on load's voltage-current character
${ }^{\text {a }}$ Output current is mean value.
${ }^{(4)}$ Typical value at full load, depends on load's voltage-current character.

## Product description

- Optional strain-relief set for independent applications
- Transforms the LED Driver into a fully class II compatible LED Driver (e.g. ceiling installation)
- Easy and tool-free mounting to the LED Driver, screwless cable-clamp channels for long strain-relief ( $30 \times 43 \times 30 \mathrm{~mm}$ )
- With screws for short strain-relief $(15 \times 34 \times 30 \mathrm{~mm})$
- Overall length $=$ length $L($ LED Driver $)+2 \times 30 \mathrm{~mm}$ (long strain-relief set), $2 \times 15 \mathrm{~mm}$ ( short strain-relief) or long and short strain-relief any combination
- Standard SC (L = 30 mm ) available as non-pre-assembled and pre-assembled
- Short SC (L = 15 mm ) only pre-assembled available


ACU SC $30 \times 43 \times 30 \mathrm{~mm}$ CLIP-ON SR SET ACU SC $30 \times 43 \times 30 \mathrm{~mm}$ CLIP-ON SR SET 300 (28001168, non-pre-assembled) (28001351, non-pre-assembled, 300 pcs. packaging)


ACU SC $30 \times 43 \times 30 \mathrm{~mm}$ CLIP-ON SR PA (28001699, pre-assembled)


ACU SC $15 \times 43 \times 30 \mathrm{~mm}$ CLIP-ON SR PA (28001574, pre-assembled)




ACU SC $15 \times 43 \times 30 \mathrm{~mm}$ CLIP-ON SR PA

## Ordering data

| Type | Article <br> number | Packaging <br> carton ${ }^{(1}$ | Packaging <br> outer box | Weight per pc. |
| :--- | :--- | :--- | :--- | :--- |
| ACU SC 43x30mm CLIP-ON SR SET | $\mathbf{2 8 0 0 1 1 6 8}$ | $10 \mathrm{pc}(\mathrm{s})$. | $500 \mathrm{pc}(\mathrm{s})$. | 0.038 kg |
| ACU SC 43x30mm CLIP-ON SR SET 300 | $\mathbf{2 8 0 0 1 3 5 1}$ | $300 \mathrm{pc}(\mathrm{s})$. | $300 \mathrm{pc}(\mathrm{s})$. | 0.038 kg |
| ACU SC $\mathbf{3 0 \times 4 3 \times 3 0 m m ~ C L I P - O N ~ S R ~ P A ~}$ | $\mathbf{2 8 0 0 1 6 9 9}$ | $10 \mathrm{pc}(\mathrm{s})$. | $500 \mathrm{pc}(\mathrm{s})$. | 0.021 kg |
| ACU SC $\mathbf{1 5 x 4 3 \times 3 0 m m ~ C L I P - O N ~ S R ~ P A ~}$ | $\mathbf{2 8 0 0 1 5 7 4}$ | $10 \mathrm{pc}(\mathrm{s})$. | $1,200 \mathrm{pc}(\mathrm{s})$. | 0.010 kg |

[^0]
## 1. Standards

EN 55015
EN 61000-3-2
EN 61000-3-3
EN 61347-1
EN 61347-2-13
EN 61547
EN 60598-1
EN 62384

### 1.1 Glow-wire test

according to EN 61347-1 with increased temperature of $850^{\circ} \mathrm{C}$ passed.

## 2. Thermal details and life-time

### 2.1 Expected life-time

| Expected life-time |  |  |  |
| :--- | :--- | :---: | :---: |
| Type | ta | $\mathbf{4 0}{ }^{\circ} \mathrm{C}$ | $\mathbf{5 0}{ }^{\circ} \mathrm{C}$ |
| LC 30/700/42 fixC SC ADV2 | tc | $60^{\circ} \mathrm{C}^{\oplus}$ | $70^{\circ} \mathrm{C}^{\oplus}$ |
|  | Life-time | $100,000 \mathrm{~h}$ | $50,000 \mathrm{~h}$ |

${ }^{(1)}$ Test result at max. output voltage.

The LED Drivers are designed for a life-time stated above under reference conditions and with a failure probability of less than $10 \%$.

## 3. Installation / wiring

### 3.1 Circuit diagram

220-240 V
$50 / 60 \mathrm{~Hz}$


### 3.2 Wiring type and cross section

The wiring can be in stranded wires with ferrules or solid with a cross section of $0.2-1.5 \mathrm{~mm}^{2}$. Strip $8.5-9.5 \mathrm{~mm}$ of insulation from the cables to ensure perfect operation of the push-wire terminals.
Use one wire for each terminal connector only.


### 3.3 Release of the wiring

Press down the "push button" and remove the cable from front.

3.4 Fixing conditions when using as independent Driver with Clip-On

Dry, acidfree, oilfree, fatfree. It is not allowed to exceed the maximum ambient temperature (ta) stated on the device. Minimum distances stated below are recommendations and depend on the actual luminaire.
Is not suitable for fixing in corner.


### 3.5 Wiring guidelines

- All connections must be kept as short as possible to ensure good EMI behaviour.
- Mains leads should be kept apart from LED Driver and other leads (ideally $5-10 \mathrm{~cm}$ distance)
- Max. length of output wires is 2 m .
- The secondary wires (LED module) should be routed in parallel to ensure good EMC performance.
- Secondary switching is not permitted.
- Incorrect wiring can demage LED modules.
- To avoid the damage of the Driver, the wiring must be protected against short circuits to earth (sharp edged metal parts, metal cable clips, louver, etc.).


### 3.6 Replace LED module

1. Mains off
2. Remove LED module
3. Wait for 20 seconds
4. Connect LED module again

Hot plug-in or secondary switching of LEDs is not permitted and may cause a very high current to the LEDs.

### 3.7 Installation instructions

The LED module and all contact points within the wiring must be sufficiently insulated against 3 kV surge voltage.
Air and creepage distance must be maintained.

### 3.8 Mounting of device

Max. torque for fixing: $0.5 \mathrm{Nm} / \mathrm{M} 4$

## LED Driver

Compact fixed output

## 4. Electrical values

### 4.1 Diagrams

4.1.1 Efficiency vs load

4.1.2 Power factor vs load

4.1.4 Input current vs load

4.1.5 THD vs load

THD without harmonic $<5 \mathrm{~mA}(0.6 \%)$ of the input current:

4.1.3 Input power vs load


### 4.2 Maximum loading of automatic circuit breakers in relation to inrush current

| Automatic circuit breaker type | C10 | C13 | C16 | C20 | B10 | B13 | B16 | B20 |  | ent |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Installation Ø | $1.5 \mathrm{~mm}^{2}$ | $1.5 \mathrm{~mm}^{2}$ | $1.5 \mathrm{~mm}^{2}$ | $2.5 \mathrm{~mm}^{2}$ | $1.5 \mathrm{~mm}^{2}$ | $1.5 \mathrm{~mm}^{2}$ | $1.5 \mathrm{~mm}^{2}$ | $2.5 \mathrm{~mm}^{2}$ | $I_{\text {max }}$ | Time |
| LC 30/700/42 fixC SC ADV2 | 44 | 53 | 59 | 85 | 28 | 36 | 44 | 54 | 22 A | 120 s |

This are max. values calculated out of inrush current! Please consider not to exceed the maximum rated continuous current of the circuit breaker. Calculation uses typical values from ABB series S200 as a reference.
Actual values may differ due to used circuit breaker types and installation environment.
4.3 Harmonic distortion in the mains supply (at $230 \mathrm{~V} / 50 \mathrm{~Hz}$ and full load)
in \%

|  | THD | 3. | 5 | 7. | 9. | 11. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LC 30/700/42 fixC SC ADV2 | $<10$ | $<15$ | $<10$ | $<5$ | $<5$ | $<3$ |

Acc. to 6100-3-2. Harmonics $<5 \mathrm{~mA}$ or $<0.6 \%$ (whatever is greater) of the input current are not considered for calculation of THD.

## 5. Functions

### 5.1 Short-circuit behaviour

In case of a short circuit on the secondary side (LED) the LED Driver switches off. After elimination of the short-circuit fault the LED Driver will recover automatically.

### 5.2 No-load operation

The LED Driver works in burst working mode to provide a constant output voltage regulation which allows the application to be able to work safely when LED string opens due to a failure.

### 5.3 Overload protection

If the output voltage range is exceeded the LED Driver will protect itself and the output current will descrease till LED flicker. After elimination of the overload, the nominal operation is restored automatically.

## 6. Miscellaneous

### 6.1 Insulation and electric strength testing of luminaires

Electronic devices can be damaged by high voltage. This has to be considered during the routine testing of the luminaires in production.

According to IEC 60598-1 Annex Q (informative only!) or ENEC 303-Annex A, each luminaire should be submitted to an insulation test with 500 V dc for 1 second. This test voltage should be connected between the interconnected phase and neutral terminals and the earth terminal.
The insulation resistance must be at least $2 \mathrm{M} \Omega$.

As an alternative, IEC 60598-1 Annex Q describes a test of the electrical strength with 1500 V AC (or $1.414 \times 1500 \mathrm{~V}$ DC). To avoid damage to the electronic devices this test must not be conducted.

### 6.2 Conditions of use and storage

Humidity
$5 \%$ up to max. 85 \%, not condensed (max. 56 days/year at $85 \%$ )

Storage temperature: $-40^{\circ} \mathrm{C}$ up to max. $+80^{\circ} \mathrm{C}$

The devices have to be within the specified temperature range (ta) before they can be operated.

### 6.3 Maximum number of switching cycles

All LED Driver are tested with 50,000 switching cycles.
The actually achieved number of switching cycles is significantly higher.

### 6.4 Additional information

[^1]
[^0]:    ${ }^{(1)}$ 28001168: A carton of 10 pcs. is equal to 10 sets, each with 2 strain-reliefs parts.
    28001351: A carton of 300 pcs. is equal to 300 sets, each with 2 strain-reliefs parts.
    $28001699+28001574$ : A carton contains exactly 10 pcs. strain-reliefs (no sets)

[^1]:    Additional technical information at www.tridonic.com $\rightarrow$ Technical Data

    Guarantee conditions at www.tridonic.com $\rightarrow$ Services

    Life-time declarations are informative and represent no warranty claim. No warranty if device was opened.

